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FOREWORD

This research was supported under contract NASI-I0277 with the National

Aeronautics and Space Adminisurauion's Langley Research Center. The technical

monitor on the contract was H. Harris Hamilton If. The results are published

in two parts:

Part I Description of Basic Method (NASA CR 111921)

Part II Description of Computer Program (NASA CR 111922)

Part I contains a detailed description of the theoretical approach and basic

equations that were used to obtain a solution to the problem. Part II contains

a detailed description qf the computer program and is intended to serve

primarily as a users _ manual_
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CALCULATION OF INVISCID SURFACE

STREAMLINES AND HEAT TRANSFER

ON SHUTTLE TYPE CONFIGUEATIONS

Part I - Description of Basic Method

By Fred R. DeJarnette

North Carolina State Universlt 7

$U_5_XY

A computer program is developed which calculates laminar, transitional, and

turbulent heating rates on arbitrary blunt-nosed three-dimensional bodies at an

angle of attack in hypersonic flows. The geometry of the body is generated from

a two-dlmensional cubic spllne fit to coordinates at several axial stations along

the body. Invlscid surface streamlines are calculated optionally from input

pressure distributions or modified Newtonian pressures. Laminar and turbulent

heating rates are determined alon 8 a streamline from the application of the axl-

symmetric analogue, or small cross flow assumption. The transition region is

specified optionally by geometric location, momentum thickness Reynolds number,

or integrated unit Raynold_ number along a streamline° Transition heatlng rates

are _hen calculated as a weighted average of the local laminar and turbulent

values. Either perfec_ gas or equilibrium air properties may be specified°

Results are presented for a 51unfed 15" half-angle cone, a blunted 70"

del_a wing, and the HL-10 lifting body° By comparison with experimental data

for the blunted cone the method was found to yield reasonably accurate laminar

heating rates for this case.

INTRODUCTION

s_ace shuttle vehicles are subjected to severe aerodynamic heating during

the reentry phase of their trajectories. In order to design appropriate thermal

protection systems, the heat-transfer rates to the exposed surfacea are re-

qulred. Since many different configurations and flight conditions are belng



considered for the space shuttle, existing experimental heating rates are in-

sufficient, and an exhaustive new experimental program would be very costly.

This part of the report presents an analytical method for calculating laminar,

transitional, and turbulent heating rates on general three-dimensional bodies

for a wide range of reentry flight conditions. A description of the computer

program appears in Part II (NASA CR 111922).

For those flight conditions where aerodynamic heating is important, the

flow field generally can be represented by a boundary layer adjacent to the

surface and an inviscid layer between the boundary layer and bow shock wave.

Reentry velocities are high enough to cause the gas in the shock layer to devi-

ate from a perfect gas, but sufficiently low (less than 30,000 ft/sec) that

radiative heat transxer is small compared to convective heating.

Numerical methods are currently available for calculating inviscld and

boundary-layer flow-flelds over two-dimensional and axlsymmetric bodies at zero

angle-of-attack (e.g. refs. i and 2). Also, methods for calculating inviecid

flow fields over pointed and spherically blunted three-dimensional bodies have

been developed (e.g. refs. 3 and 4). However, these techniques require con-

siderable storage and computational time on existing digital computers, and a

satisfactory three-dimenslonal boundary-layer program is not available. The

problem is further complicated by the fact _hat shuttle type configurations are

general =hree-dimensional bodies whose geometry is difficult to describe ana-

lytically. During reentry =hey operate at large angles of attackD and laminar,

transitional, and turbulent heating may occur.

If tractable solutions of three-dimensional flow fields are to be obtained,

simplifying approximatlons must be used for the Inviscid and viscous flow-

fields. A substantial simplification to the viscous flow field may be achieved

by the axlsymmetrlc analogue, or small cross flow approximation, for three-

dimensional boundary lay_r_ (refs. 5 and 6). This approximation allows the

heat transfer rate along a surface Invlscid streamline to be calculated by any

method applicable =o an equivalent body of revolution at zero angle-of-attack

provided the surface lnvlscld solution is known. Along each streamline the

"equivalent radius" or scale factor replaces the radius of the body of revo-

lution i_ the axisymmetric analogue, and the distance along a streamline re-

places distance along the body of revolution. Thus each surface invlscld

2



st_eamllne on the three-dimensional body corresponds to a different equivalent

body of revolution at zero angle-of-attack.

In order to apply the axisymmetric analogue, the Invi_:id solution at the

edge of the boundary layer must be known_ For blunt nosed bodies with thin

boundary layers, the flow field properties at the edge of the boundary layer

are nearly the same as the corresponding Invlscid solution on the surface. If

the surface streamlines are assumed to pass through the normal part of the bow

shock wave, then th_ surface entropy (for a perfect or equilibrium gas) is

equal to the entropy aft of the normal shock wave. _ The remaining invlscld

solution needed for the boundary layer solution can be calculated from the

pressure distribution; and when the pressure distribution is unknown, modified

Newtonian pressures can be used.

One of the major difficulties in applying the axisymmetric analogue is the

calculation of the surface inviscid streamlines and the corresponding "equiva-

lent radius" or scale factor. References 7, 8, and 9 present several approach-

es for calculating the surface inviscid streamlines. Approximate methods for

determining the "equivalent radius" are given by Timmer (ref. 9), Pinkus and

Cousin (ref. i0) and Vaglio-Laurin (ref. ii), whereas references 12 and 13

determined equivalent radii on blunted cones at an angle of attack by calcu-

lating the spacing between streamlines. These approximate techniques are not

satisfactory for general threa-dimenslonal bodies.

DeJarnette and Davis (ref. 14) determined an analytical expression for the

"equivalent radius" on blunted cones at an angle of attack based on a slmpll ....

fled method for calculating the streamlines. Late1_ DeJarnette and Tal (ref.

15) developed an "exact" method for calculating tho streamlines and "equivalent

radius" from surface pressure distributions on axillb_metric bodiel at an angle

of attack. Bo_h techniques are extended to genera_ three-dlmenslonal bodie_ in

this report.

+ This assumption is invalid in those regions where the bouadary layer has

"swallowed" the entropy layer.

EeJarnette also obtained analytical rGsults for _,lllptlc cones at an angle

of mt_ack, using this simplified method, while participating in the _ASA-

ASEE Summer Faculty Research Program at Ames Research Center, NASA, Summe:r,

1969 (unpublished).
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Another difficul_y associated with the surface streamlines is their be-

havior in a three-dlmensionai stagnation region. Th_ s'_agnation point is a

singular point (nodal point), and thus numerical problems are normally encoun-

tered there, These problems are solved in the present method by developing

analytical ,_.xpremslons for the straamllne geometry and "equivalent radius" in

the nelghbo:_.'hood of the stagnation point,

In thQ appllcatlon o_ the axlsymmetric analogue along each surface invis-

cid strsaml:_ne, methods are required _or the calculation of laminar, transi-

tional, and turbulent heating _ates on an equivalent body of revolution at zero

angle-of-at hack. Techniques which involve the numerical solution of the appro-

prla_:e bouni_ary layer equations, e.g. ref. 2, could be used; however, th_s

a_,proach wo:uld destroy the simplicity and 9hort computational time desired in

the 'p_esent! method. Therefore, approximate solutions of the boundary layer

equations =n a body of revolution wi-ll-be applied.

Lees' method (ref. 16) was used with the axisymmetric analogue to calcu-

late| laminar heating ra_es on blunted cones at an angle of attack in referenc&s

14 and 15, iand the results compared well with experimental data. However,

Lees' method neglects pressure gradient e:."ferts and is valid only for cold

walls;, AI3;a bet=er approximation, the pr,ase,nt method uses the local similarity

metho._ of lieckwith and Cohen (ref, 17), Which includes the effects of pressure

gradiL_nts and non-cold WaI_Ls on laminar beating rates, However, special con-
"%

sider,lxtlonimust be given to the application of this methbd to three-dimensional

s tegn_!ti _n: points.

]he a,.i_alytlcal calculation of =ransitlonal heatlng rates and locatioB of

the tx.aDsi_ion region has been unsuccessful to date, and the reader is referred

_ --_o tell, 2 for a discussion of '=his phencmellon. For the present work_ transi-

tional h e_,itlng rates are computeH as a weighted sum of the laminar and turbu-

lent he_.=_ing rates, using the weighting distribution of Dhawan and Naraslmha

(re.f. i_) ;, Along a surface invlscid etc.'ca'reline,the beginning and end of

transition may be specified optionally _)y one of the following =hree param-

I. _eometrlc location, or

2. valui: of local moment_u, thlckn,_ss Reynolds numberh or

3. valu_ _,of integ:ated unit Reynolds number along a streamline.

4
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Many methods have been developed for calculating turbulent boundary layer

properties (see discussion in ref. 2). As a compromise between accuracy and

simplicity, the technique developed by $paldlnE and Chi (ref. 19) for calcu-

lating turbulent skin friction coefficients based on momentum thickness

Reynolds number is used here. The momentum thickness is calculated from the

integral method of Reshotko and Tucker (_ef. 20) for usa in Spalding and Chi's

equations. Then the skin friction coefficients are converted to turbulent

haa_ing rates through van Karman's form of Reynolds analogy (see ref. 21).

For the applicatlons herein, both a perfect 8as and equilibrium air are

considered. Therefore, modifications to the methods of Spa!dinE and Chi (ref.

19), and Reshotko and Tucker (ref. 20) a_e needed to make them applicable to

equilibrium air. To keep the computations down to a minimum, the correlation

formulas of reference 22 are used for equilibrium air properties.

Results from the computer program are presented for a blunted 15 e half-

angle cone, a blunted 70 ° delta wing_ and the HL-10 lifting body as example

applications of the basic method.

S_BOLS

a,b

a
e

aj, j,cj,dj

Ai,k

B

Bi,k

C(8)

Cf

Cf,i

DIDS

aNN,aT,ell

parameters defined by eqs, (150) and (151)

spe_,d of sound at edge of boundary layer, ft/sec

tone,ante used in eq. (ii)

coefficients for spline function defined by eq. (25)

Ratio of principal velocity gradients, see eq. (107)

coefficients for spline function defined by eq. (25)

paramete_ used in eq. (95)

local skin friction coefficient, 2Tw/(PeUe 2)

incompressible skin friction coefficient

derivative along a streamline

unit vectors on body surface given by eqs. (33), (35), and (36)
L
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un£= vectozs in streamline coordinate system, eqs. (37), (34),
and (38)

unit vectors in cyilnd'ric_l coordinate syst6m, see fig_ 3

eccentricity of conic section

body radius, measured from longitudinal axis

cubic spllne _unction foz body radius

function defined by eq, (_27)

fanc_ion defined by eq, (121)

function de_ined by eq, (29)

scale factor in 8-direction, dq - h d8

adiabatic wall enthalpy, ft2/sec 2

en_halpy inslde and at edge of boundary layer, respectively, f_2/sec2

wall enthalpy, ft2/sec 2

=eterenca enthalpy, 2o119 x 108 ft2/sec 2

scale factor in s-direction, ds = hsd_

_compressible form fac=or, H - _e/8 m

incompressible form factor

_ransfomned form facto_

s_atic en_halpy aft of normal shock, ft2/sec 2

free.-stxeam stasnatlon enthalpy, ft2/sec 2

coefflcient used in cubic spllne function

Mach number

straight-line distance normal to body surface

compressible and incompressible $tanton numbers, respectively

pr_ssu=eD ib/ft 2

parameters defined by eq. (!2)
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t
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IJG

v2

V

V

VI 1'VT
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wf

x,y,z

Pzondtl number

distance normal to streamline on hod> _,_rface, dq - h d8

heat-transfer race at wall, BTU/ft2-sec

body radius (r - f)

body radiu_ of curvature at nose

principal body radii of curvatur_ at stagnation point

momentum thlcknase Reynoldsnumber

:s p U dS
integrated unit Reynolds number, | _ee_._

oJ _e 2 "
gas constant for undissociatad air, 1716 ft /secZ-°R

poslt_on vector for points on body

distance along a streamline, measured from stagnation point

(dS - hsd_)

body coordinates at stagnation point

en_zcpy

time, sac

enthalpy ratio_ he/H s

temperature, °R

velocity inside and at edge of _oundary layer, respectively, f_/sec

function defined by eq. (174)

velocity aft of normal shock wave, f_/sec

Inviscld speed on surface, ft/ssc

invlscld velocity on surface, ft/s_c

velocity components along Sll and ST, ft/se_ ,_

unit vector in direction of freestream velocity vector

weighting function given by eq. (161)

Cartesian coordinates
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r

6

_w

!

_w

m

_tr

T
W

Subscripts:

a

an_le of attack

coordinate normal so streamline on body surface

pressure gradient parameter given by eqo (146)

ra_£o of spec;zfi.c heats

body angle defined by aq. (30)

displacemen= thickness

body angle defined by eq. (31)

radius of _ircl_ around stagnation point, see fig. 6

wall en_halpp ratlo, hw/E s

en_halpy gradlen_ normal to wall

_nclina_ion angle of surface invlscld streamline, see eq. (37)

momentum _hickness, ft

parame=er defined by eq. (163)

uoefflclent of viscosity, slug/f_-sec

coordlnate along a Streamline (de - hsd_)

parameter defined by aq. (162)

mass density_ slug/f_ 3

angle defined by eq. (47)

wall shear e=reee, ib/ft 2

circumferential angle, see fig. 4

angle defined by eq. (78)

edge of boundary layer

laminar value

s_ag_ta_ion poin_

8
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turbulent value

evaluated at wall

evaluated on ¢-clrcle, (see fig. 6)

frees=ream conditions

end of transition region

beginning of transition region

conditions aft of normal shock wave

Geometry for General Three-Dimenslonal Bodies

Before heating rates can be calculated, a description of the body geometry

is needed which yields slopes and radii of curvature in both the axial and clr-

cumferential directions. If the body could be described by analytic equations,

these results would be easily obtainable. However, the geometry of shuttle-

type configurations cannot, in general, be represented by an analytic equation.

Often only the coordinates of the body at several axial,eta=lone are known, and

the body geometry must be generated from this data. Therefore, a numerical

method is required to generate the body shape and calculate slopes and radii of

curvature at any position on the body. This method must be capable of perform-

ing numerical interpolation and differentiation reasonably accurately.

It is well known that numerical differentiation is generally inaccurate.

However, the method of splines (see ref. 23) has been proven to be an effective

method for nt_merical differentiation, integration, and interpolation. The

effectiveness of the cubic spline to perform these operations accuratel> is a

consequence of the strong convergence properties it possesses. Before discuss-

ing the two-dimensional cubic splits, which is needed uo describe a three-di-

mensional body, the one-dimensional splits will be developed first.

To illustrate the cubic spline for one dimension (one independent varia-

ble), co,sider the coordinates of a body crass-section (viewed from the rear)

with on_ plane of symmetry as sho,_n in figure i.

9
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m

JmJ m

For the interval 0 S $ _ _, a mesh _ of body positions is given by (yj, zj)

with j - i, 2, ..., Jm" It is convenient to transform these coordinates into

polar coordinates by the transformation

=J _ fj _ [yj2+ zj2] i/2 (1)

where

_j_" tan-l(zj/Yj)

0 - _._< _2 < °" <_'" = _
Jm

(2)

and 9 is the independent variable. Then the cubic splini_ for this mesh yields

a function f_(9) which is (I) continuous with its first and second derivatives

on [0, _], (2) coincides with a cubic in each subinterval SJ-i & 9 _ Sj (J =

2, 3, _.., Jm), and (3) satisfies fA(¢j) - fj (J m 1, 2, ...., Jm). Note that

the points $i' 92' '''' 9Jm need not be equally spaced.

I0



d_2

[_J-l' 9j] is assumed to have a linear variation of the second derivative,

J_i - 9) (_ - _j_l)

--- ÷ mj ACjf_(9) " mj_1 _gj

ioe_

(3)

where Agj " 9j - 9j. I,

the constants of integration, the first derivative and spline functions on

[¢.i-l'9j] ar_

_/ - 9)2
f'(9)
L', "-mJ-i 2 _gj
and

J__ - _)

fa (9) _ m_-l 6 a_j + m_

- 6

Then by integrating the above expression and eva_uating

+ j 2 Agj + - mJ -I)aCj - (mj 6

9)(_ - 9j j) _ (gj -

6 A¢S + fj-i _gj

(4)

(s)

In order to apply the equations above, it remains to calculate the second

derivatives mj at the mesh points. By virtue of equations (3) and (5), the
I!

functions fA(9) and fA(9) a_e continuous on [0, _]. By equating the one_sided

limits of the derivatives at each interior mesh point, fl(gj-) = f_(¢j+), the

'(9) becomes continuous on [0, _]. These relations yieldfunction fA

_[_j + (Agj+_j+l ) i+ ..... "
6 -i 3 6 A@j+ 1 Agj

(6)

for J - 2, 3, ..., Jm - I.

Equation (6) gives (Jm - 2) simultaneous equations in the Jm unkno_s m I,

m2, ..., mjm. Therefore two additional conditions must be specified, the "end

conditions", to dete_ine all the mj's, If the slopes at the end points,

' "'(_-) are known, the one-sided derivatives from equation (4)fA(O+) and fA

provide the relations

ii
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and . -_.-- IrA fJm -I. - fJmm _ 2mj_ 6 "(:) ÷ (8)
Jm-i A_Jm _Jm

If the curve shown in fig° 1 is _ymmetric about the y-axle, then symmetry

dictates _hat f'(O +) - f'(_-) - O, Sometimes these slopes are not available,

and the second de_ivatlves at the ends are assumed constant over the end in-

tervals, i_e_

m I - m 2 and mjm_l - mjm (9)

Another type of end condition is that symmetry requirements may dictate that

m I =-0 and m -0 (i0)
Jm

No matter which of the three types of end conditions is used, the system

of equations given by equation (6) and the end conditions may be written as

blm I • clm 2 = dI

a2m I + b2m 2 • c2m 3 - d 2

a3m 2 + b3m 3 + c3m 4 - d 3

aJm-i mJm-2 + bJm_ 1 mJm-I + Cjm. 1 m_ m = dim_ 1

(n)

aim m_m-i + bj:jm = dim

where aj, bj, cj, and dj arm constants. This is a system of _m linear e, uatlone

for the mj'e and it is of the tridiago:_m.l matrix form.

A very efficient algorithm for solvln 8 _hls system is given on page 14 of

reference 23, In this algorithm, the following parameters are formed (for

(qo " O)

(u° = O)

1(12)

J - i, 2, .o_, Jm):

pj - aj qj-z + bj

qj - -cj/pj

uj - (dj -aj U_.l)/p_

12



Then by successive elimination of ml, m2, ..., mJm - 1 from the 2nd, Srd, ...,

Jm-th equations of (12), the following equivalent equation system results:

Jm Jm

mj - qj mj+ I+ uj

(J - Jm-l, Jm-2, ..., l)

(13)

mJm, mjm_l, mj'sThese relations y_.eld ..., mI successively. Once the are

'(_), and f_($) can be easily calcula=ed fromevaluated, the functions fA($), fA

equations (5), (4), and (3), respectively, for any value of _ in the interval

0_< __< _.

The three-dlmenslonal bodies considered herein will be described by r -

f(x,$) where x is distance alon8 the axis from the nose, _ is the circumferen-

tial position, _ - tan -I (z/y), and r is the radius from the axis, r = _y2+z2.

Cylindrical coordinates were chosen over Cartesian coordinates in order to avoid

infinite body slopes in the cross-sectlonal planes. The body shape is 8enerated

from the coordinates (YlJ' zlJ) of cross sections at several axial stations Xl,

x2_ ..., xi (see fib. 2).
m

.._-

f

xI x2 x3

Y

x4

/
J'Jm

x _.__

q

j°l

xi Y
m

=3

J-2

Slde view View from rear

Fisure 2. - Body coordinates
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Rere a two-dimenslonal spline function is need,_.d to describe the body, and the

body shape may be a general three-dimensional _ody except for the following

restrictions :

i. The body must have at least one plane of symmetry.

2o The body radius r - f(x, ¢) must be single valued.

3. The nose of the body must be located at x - 0 and at this position
@f

Since the body has at least one plane of symmetry, let this plane be the

x - y plane and only the he!f body 0 _< _ _< _ need be described. A simple doubly

cubic spllne (see Chapter VII of ref. 23) is used to generate the body shape

from the input coordinates. The rectangular region 0 _< x _<xlmj 0 S $ _< _ is

subdivided i_to a family of subrectangles xi_ 1 <_x <.xi, _k-i S _ <_ _k where

0_x I < x 2 < ... Xlm and 0=@I < _2 < .... _Jm" _" Thus _he simple doubly cubic

spllne for this two-dimensional mesh yields a function fA(xp$) which is: (I) an

element of C24(R) , where crn(E) is the family of functions fA(X,¢) on the rec-

tangular region K whose n-_h order partial derivatives, involving no more than

r-th order differentiation with respect to a single variable, exist and are con-

tlnuous; (2) is a double cubic in each subrectangle, and (3) satisfies

fA(xi'_k ) = fik for each point of the double mesh.

To see how the one-dimensional cubic spline can be extended to the two"

dimensional cubic spline, apply the one dimensional spline function fA(_) of

equation (5) to each cross section of the body at x 2, x 3, ..., Xim. If the co-

ordinates $j are chosen to be the same in each cross section, then the spline

function becomes

__¢)3 (¢___I) 3 If__l(Xi) _ 1
" mj-l(Xi) 6 + mJ(xl) 6

I+ fj(xi) - mj(xi) (14)

The quantities which change from one x-station to another are m__l(X i) , mj (xi) ,

fj_l(Xi), and fj(xi). Hence, fA(xi,@) could be applied to any general axial

position to yield fa(x,_) if the x-variation of mj_l(X), mj(x), fj_l(X), and

fj (x) werQ known. These variations may be determined by formln 8 one-dimenslonal

cubic splines of mj(x) and fj(x) from the values of mj(x i) and fj(x i) at

x - xl, x2, ..., Xim for each value of J - i, 2, ..., Jm'

14



The one-dlmensional cubic spline function fj (x) presents an immediate

_I (0)
problem because the end condition dx _ _ at the nose cannot be handled.

However, for the region 0 = x I _ x _ x2, the axial variation of the radius

r - f(x,_) for $ - constant can be described by a general conic section _or

most bodies of interest. This general conic section may be written as

[f(x,_)]2 . 2Re(_)x + [e2(_) - l]x2 (15)

where Ro($) is the nose radius of curvature and e(¢) is the eccentricity of the

general conic section (e = 0 for a circled 0 < e _ i f_r an ellipse, e = i for

a parabola, and e > 1 for a hyperbola). Therefore, if the function f2(x,¢) is

used for the doubly cubic spline, in lieu of f(x,_), this function is well be _

hayed at x = O, because

8f2(0'_) = 2R (¢) (16)
8x o

and

_2f2(0,¢)
- 2[e2(_) - i] (17)

_x 2

Thus for the region 0 - x I _ x E x2 it is seen that

which means that

and also

82f2(x'¢) = 2[e2(¢) - 1]

8x 2

82f2(xl,¢) 82f2(x2,¢)
m

_x 2 _x 2

(18)

(19)

_4f2 (Xl,¢) _4f2 (x2,¢)
. (20)

_x2_¢ 2 _x2;O 2

These two equations are needed for the end conditions below.

In view of the foregoing considerations, the doubly cubic spline represen-

tation for f2(x,¢) is

15



n_-----w_7, t

(_k- _)3 (__ %_i)3
f2(X,#) " (x) " + ink(X)
A mk-i 6 a% 6 A%

+ [fk2_l(X) - ink_l(x) _]
k

_3k (_- _k_1)

• [f2(x) -ink(X) -_-] A_k (21)

where the points 0 = 31 < 32 _ ... 3k are chosen to be equally spaced around
m

the circumference at each axial station (A@k - Ck " @k-i " constant). In

a,_uation (21)

_2f2 (x, #k)
(22)

'_k(x) = 2
_3

2
and mk(x ) and fk(x) are determined from one-dimenslonal cubic spllne fits to the

data mk(x i) and f2(xl) , respectively,, for i = l, 2, ._., im. For xi_ l _ x _< xi

these functions take the form

(xi - x) 3 (x - xl. 1) 3

ink(X) = Bi-l,k 6 _x i ÷ Bi,k 6 Ax i

_x_ (xi - x)

• [mi_l_ k - Bi_l, k _'] Ax i

Ax_ (x - xi_l) (23)

• [mi, k - Bi, k --_-] Ax i

Although the input body coordinates are not generally equally spaced in the

circumferential direction and generally differ from one body cross section to

another_ a one-dimenslonal spllne fit to the data at each c_oss section can be
2

used to calculate new points fA(xi_ Ck ) which are equally spaced in the clr-

cumferentlal direction.

15



and

f_(x) ,.Ai_l, k

(xi _ _)3 (x - xi_l)3

6 AX i + Ai,k 6 Axi

2 _2 (xi - x)

÷ [fi-l,k - Ai-l,k 6 ] _xi

_x_ (x - xi_ l)

+ [f21,k - Ai, k -_--] Axi
(24)

where
_2f2 (xi,_k)

Ai, k
_X2

Ax i E x i - xi_ 1

The end conditions at x - 0 follow from equations (19) and (20) as

(25)

BI, k = B2, k and AI, k m A2,k (26)

In addition, zt is assumed that at thm end of the body

Bi -l,k = Bi ,k and Ai -l,k m Ai ,k (27)
m m m m

_2f2(X,_k)

These last two conditions imply that and f2(x,_k) have at most
_2

a

quadratic variation in x over the last sublntarval [Xlm_l, Xlm ].

In the application of the cubic spline, it should be noted =hat the splina

function passes through every input coordlnate point. Therefore_ if an Input

point is incorrect, the spline functlon _till passes through =hat point. On

the other hand, the resulting derive=Ires from the spllne function represent a

smoothing of the actual derivatives (_e_ pp. 42-44 of ref. 23). When accurate

second derivatives are desired, a epline-flt o_ the first derivatives (called

a spline-on-spllne) has been found to be an effective tool.

17
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inviscld Surface S_reamlines

In order to apply the a_isymmetric analogue to _hree-dimensional boundary

layer_, it is necessary to _ace out inviscid surface streamlines and calculate

the corresponding "equivalent radius" or scale factor along each streamline,

This scale factor (h) is the metric coeftlcien_ for the coordinate _ normal to

the snreamline and on the surface o_ _he body, It is a measure of the diver-

genoa of the streamiines as they w_ap a_ound the bud y,

An orthogonal coozdinate system %711i be used for the streamline geome_ry_

Le= the dlfferen_ial of arc length along a streamline be d$ - hs d_, the differ-

entlal of arch length n_;rmal to a stre,_mllne (.but on the body surface) b_ dq -

h dS, and the dlfferen_ial of d&stance normal _o the surface be dn. Both h
s

and h are metric coef_ic_enus or scale factors for the coordinates { and 8,

respectively; however, only the scale factor h is needed for the application

of the axlsymmetrlc aualogue, Since _he eoordlnate n is the @traight-llne

distance normal to the surface, its scala facto_ is unity. Along a e_reamline

the coordinate B is constant, but in varies from one streamline _o another,

Define the body geometry by Monge's form r = f(x,¢) in a cylindrical co-

ordinate system with the unit vectors ex' er' and & in the x, _, and ¢ direc-

tions, respectively (see fig. 3). Note tha_ the eros@ section at _he rlght of

figure 3 is viewed from the rear and _hat _he coordinate system is zlght handed.

S
/

Y

X,e
X

Y

Side View Rear View

FJ.guze 3. Body Geome=ry
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Define

then the unit vector normal (outer) to the surface is

_ _f._ +a l_f _
VF _x x _ f _ e_

" = 1/2

where

(_f. 2 i _f 2

(28)

(29)

Define the body angle P(x_) by

sin r =

_f

_x

i/2
g

(30)

where -z12 _ r _ z12

and

-_/2 __ _ <_ _/2 _'¢

and also the body angle _¢(x,¢) by

f !_____
sin _¢ =

I

(see fig. 4).

(31)

From eqs. (30) and (31) it also follows

COS P _
1

1/2
cos _¢ g

[l+ (1 _¢)2] i/2

Now the unit normal vector (eq. (28)) becomes

n = - sin r %x + cos r (cos 6_ %r - sin _ %_)
(32)

As shown in fiE. 4 the unit _ector

_NN = cos _¢ er - sin _¢ e_ (33)

is perpendicular zo zhe curv_ of the body in a cross-sectional plane (but gener-

ally not normal to the body surface). Using eq. (33) in eq. (32), the unit

_f _

* For an axisymmetri= body, _= 0 and hence _¢ _ O.

19
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normal vector can be written compactly as

" - sin f e • cos f _ (34)
n x eNN

The unit vector tangent to the body curve in a cross-sectional plane (and also

tangent to the body, see fig. 4) is

4T " 4_ 44x x eNN - cos 6 + sin _ r

and the unit vector tangent to the body surface and normal to 4T is

x ^ - cos P _ + sin P __11 _ _n aT x

(3S)

(36)

Thus el I' _'an'and _T are a set of mutually perpendicular unit vectors with

and _T tangent to the body surface .....

Y

Figure 4. Rear view of body cross section

11

In order to determine the slope of an inviscld surface streamlined let
s

be a unit vector in the direculon of the streamline with 8 the angle between

es and ell . Then

20



es -- cos 8 • l^ I + sin 0 eT (37)

-- • m Oowhere 0 < e _ _ and It is easily verified that _s en

the unit vector tangent to the surface and normal to as' i.e.

^

Define e8 as

^ = - sin e _ll + cos e eTe_ _ _s x en
(38)

Here also & , _n' and 68 are a set of mutually perpendicular unit vector withs s

and ._ tangent to the body surface. In terms of the unit vectors in cylindrical

coordinates, eqs. (33), (35), and (36) may be used in eqs. (37) and (38) to

write es and _8 as

as- = cos 8 cos P ex + (sin 8 sin _ + cos 8 cos 85 sin F)_ r

and

+ (sin e cos 6¢ - cos e sin 6_ sin r)_¢

+ (cos 8 sin - sin F sin % cos
e 8 - sin 0 cos F _x

(39)

÷ (cos 8 cos 85 + sin 0 sin 65 sin P)_¢
(40)

In order to trace out an inviscid surface streamline, it is first neces-

sary to determine the angle 8 along the streamline. This angle can be ob-

tained from the inviscid momentum equations (Euler's equations) applied along

the surface of _he body.

Euler'_ equation may be written as

Dt p

the operator _ is _he time derivative along a streamline (for steadyv_ere

flows) and is related to the derivative D/DS as follows:

D DS D V D

Dt Dt DS DS

T_ 1 8
where _---- is the derivative alone a streamline and again

DS h ;_
s

DS - dS m h d_ is the differential of arc length along a streamline.
s

- V _ the acceleration vector becomes
s

With

21



D_ V 0_ VDV V2Des
".... _ _ a _ ---
U= D$ DS _ DS

(41)

The pressure gradient in stzeamixne coordinates is

Ds h _ _n n
(42)

Thus Euler's equations become

The scalar p=oduc= of es wiuh eq- (4S) yields the familiar equa=ion

v_v__ k_m (44)
DS p DS

where it is no=ed =ha=

De
__A.% -0
DS s

follows from es es = i_ Next,, the scalar product of e8 with eq. (43) gives

va D_s &a I _ (451
DS Ph a_

To evaluate _he left side of shls equation, =he scalar produc= of e8 wi=h the

derivative of eq, (39) rasul_s in

where

and the engle o

obtain

de • _ = d% + sin f do (46)

o _ _- _ (47)

Is shown on fig, 4. Substitute eq. (46) into Eq. {45) _O

Do D_ i _ __£ (48)
_+sin_ Bg- pV2h _

This is _he s_reamline equ_tlon in _ha_ At gives the an_le O along a stream-

line. However, before it can b_ applied, transformation operators are neces-

_a=y _o relate _° and _i ___%8to derivatives in cyllndrioal coordlnates. These

= _ d_ and d_ - - & d_,* In obtaining _q. (46) from (39), no_e =ha= dfi t r

22
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transformation operatorsare derived below_

Let _ be the position vecto_ of any point on the body surface relative

to _he origin of the cylindrical coordinate system (x - O, r - 0). Since the

body normal coordinate n is zero on the surface of the body where r - f(x,_),

the position vector can be written as _ - _(x,_) and thus

d_ _R _R
- _- dx + _ a_

- a x dx + a_ f d¢ (49)

(see raf. 24). In terms of streamline coordinates on the body surface, the

position vector can also be written as

and thus

d_ - d_ + _ aS

where

an4

" &s-hsas + es_ h aS _ (50)

_ s s

_- e8 h (52)

By equating the right side of eqs. (49) and (50), there results

%x 4x + %_ f 4_ - a s h s d_ + %8 h 48 (53)

The scalar product of this equation with _x yields

dx - P- • • h d_ + ^ • e h d8
S X S e_ X

and since

i_ follows _ha_

_x _x

_ s x s
(54)
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and

Similarly, the scalar product of e¢ with aq. (53) provides

e¢ ha _ _¢fd# = es d_ • e8 h dE

and therefore

and

f _ " &s " $'¢ hs

f 88-_8= _¢ • _ h

Eqs. (54) to (57) may be used along wi=h eqs. (39) and (40) =o develop the

_ransformation operators as

(55)

(56)

(57)

and

i 8 1 8x 8 18__8

:, , _+ _ 8-7

,, - sin _ cos r Fx _"
(cos 8 cos _ + sin 8 sin 6_. sin r)

f _¢

D-'S= hs 8_ _ 8-_ 8"x + h--s" 8_ 8@

..9__
= %x " _s _ + f _¢

= cos 8 cos P k+
(sin 8 cos d_ - cos 8 sin 6_ sin _) 8

f 3¢

(58)-

(59)

In _he equaulons above it is implied tha_ all derivatives are evaluaued on the

body where r - f(x,¢) and n - O; _hus

8 _ ) and
_"_= (_'f¢,n

24



The _ransformation operators given by eqs. (58) and (59) can now be used to

write the streamline equation (eq. (48)) in its final form as

_E _- _ - sin e cos r_ ( )
sV_ ....

(cos e cos _ + sin e sin _ sin r) _ pLs)]+ f a_ (

I ao (sin e cos _ - cos e sin _ sin r) _I- sin r cos _ cos r _-_+ f

(60)

For a given surface pressure distribution, whether experimental or theoretical,

this equation can be integrated numerically to determine % alone a streamline

emana=ing from the stagnation point. However, eq. (60) is indeterminate at the

stagnation point, and this _oplc is covered below under the sub-headlng Stag-

nation Region Streamlines. The density p and speed V may be obtained from

the pressure and entropy by use of Isentropic tale=ions for a perfec_ gas or

equilibrium alr_ The geome_rlc location of each integration s_ep alone the

s_reamline is calculated by numerically integrating eqs. (54) and (56), which

by the use of eq. (39) become

and

D__x cos e cos r (61)
DS

sin 8 cos __ - cos e sin _ sin r
: - (62)

DS f

Since _he surface streamlines and their corresponding orthogonal lines are

curvillnear, the scale factors (me=tic coefficients) h s and h play an Im-

portant role because in the relation dS = h s d_ the quantity d_ is an exact

differential whereas dS in general is not. Likewise dB is an exact dif-

ferential whereas _he quantity dq m h d_ is no_. The importance of this state-

ment lles in the fact that slncQ d_ and d8 are exact differentials, mixed

partlal derivatives are interchangeable, i.e.

a2 _ a2
m ms

25
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whereas it is noted that

and

___ _2[
3S_q

From eqs. (51) and (52) there results

36as 3_ aS a_

_2_ _ a_ 3 (hs &s)

By equating the right side of _he two equations above, it follows _hat

8---(h eS) 3 ,,_ " _ (hses)

which upon expanding becomes

The scalar product of

368 3&3h , 3hs & + h ---9-s

$8 with the equation above yields

_6

8h hs .S 6,B37" TT"

(63)

The equation above may be combined with eq. (46) and the relation d$ - h
s

to Eive

d_

Dh. BB_ +. sin P 3_o
DS -38 _8

(64)

This equation cannot be used to calculate the scale factor h along a stream-
_8

line because _ is unknown when only surface pressures are giveno

In oEder to obtain an equation for the scale factor h, rewrite eq. (48) as

h

0V2h 8_ 8_ _
(48)

^

* _e8 • e - 0 fuAlows from • _ - 1
As before, 8_ 8 &8 8

26
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Differentiate this equation with respect _o 8 and substract the result from

the derivative of eq. (64) with respect to _ to get

_i D2_hh i B [ h s B_] + D(sln P)@oh DS 2 " - hs h _8 pV2h _8 DS h@--_

_ D_ j_sln r) (65)
DS h@B

where the equali_les

----@28- --@28 and --@2a = @2a

ware used to obtain eq. (65). This is the differential equation to be in_e_

grated along a streamline to determine the scale factor h; however the terms

on the zIRht side of eq. (65) must first be cast into a usable form.

By use of the t_ansformation opera,ors from eqs. (58) and (59), it is

found that the last two _erms in eq. (65) may be expressed as

DCsin r) @a

DS h@_

2

Do _@_sln r) cos r cos _ [@r @a @a @r]DS h@_ = f @x @¢ @x @¢

and the first term on _he right side of eqo (65) may be expanded to give

h s _V2h pV2h

_!_ 1 ____!!E i z _v2

h 3_ 2V2 h @8 h _8 pV 4 h @S

pV 2 h _ h _

The four terms on the right side of eq. (67) are evaluated below.

Take the scalar produc_ of & with eq. (53) to get
s

(66)

(67)

(68)
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• = O, thenSince e _ es

(69)

and eqe, (46) and (69) may be comblned wi:h eq. (68) :o yield

Comparing this equation with eq. (48), It is seen tha_ the te_m

(67) becomes

i Bhs

hh 88
S

(70)

in eq,

i_ Bhs i __E

hsh a8 pV2h 88

(71)

Since the Inviscid flow alon$ _he surface is isentropic,p - p(p,_) and the

V2 _-P-in eq. (67) can be expressed as
term-_ 8_

V2

h @8 @8

i av 2
The Bernoulll equation pV dV ,, - dp alon8 the surface allo_.!s the _erm _ 8-B-

in eq. (67) tO be written as

(72)

1 8v2 v 8v 2 _ (73)

The fourth and last _ez_n to be evaluated for eq. (67) is _ 88

By repeate_ application of the transformation _perator of eq° (58) _he _ollow-

in 8 _ela_ion is obtained:

r

[sin 8 sin _¢• f @¢

[-_ ] , _in e ,_ r _-_ Lra:< h 88

1 @r

_os r _" _-+ (-_os _ sin _

88 f ax2

_._ ÷ (,% . _._)_i _ (74)
- 2 sin O cos r (_8 " _¢) f'Bxs¢ f-_B¢2



In order to obtain eq. (74), eq. (64) was used to substitute for _,

the term e8 " e¢ follows from eq. (40) as

^ ^

•8 • •5 - cos e cos °5 + sin e sin _5 sin P

and eq. (58) was used to write

(75)

I 8f

_-_- COS S sin _5 - sin @ sin r COS 65 (76)

Using the results from eqs. (66) through (73), the equation for the scale

factor h (eq. (65)) becomes

i D2h I PS _s V2" 18__. - ] 2DS2 2 p V2 h 98 (P/Ps) (3 - M2)
PsV®

+ 2 o v2 h _8 g_f (P/Ps)
Psv. ..........

2

+ f _x _¢ _x _ ] (75,',

Eq. (74) is used in the center term on the rLgh= side Of eq. (75), and the

transformatlon operators of eqs. (58) and (59) are used to transfo.-_npartial

derivatives from streamllna coordinates to cylindrical coordlna_es.

The geodesic curvature of a curve _ - constant on =he body surface is

I Dh

h D$

and it is a measure of the amount =hat =he streamlines converge or diverge.

If D_h is positive h increases along the streamline and two neighboringDS ' •

streamlines move further apart, i.e. _he streamlines diverge. Conversely, if
Dh

the streamlines conve_ge_ is negative. As Indlca_ed in ref. 6, the form of

eq. (75) shows that h is not completely determinate. It may be multlplied

by a constant or any function of 8. However, changes in h will also result

in changes in 8. For the analysis here it is convenient to choose h and 8

in such a way that they rf,duce to the radius r and the circumferentlal angle

_, respectively, for the _eclal caa_ of an axlsymmetric body at zero angle-of-

29
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attack. Thus _ will be dimensionless, and h will ha_e the dimensions of a

length.

in s_mmary, the invis_id s_a_e streamlines and their corresponding scale

factor h are calculated by numeri_:ail/ integratin_ eqs. (60), (61), (62), and

(75) fo_ _, x, _, and h, respectively, atonM each streamline. The

numerical inue_ati_n schem_ used here is the #_h o_de_ v_Llabie step-size

Runge-Kut_a me_;ho4, Inl._ial <onditlons requlz_d _o s_rt the intesration of

e'ach streaml_n_ are developed below _n the section on Stagnation Region S_ream-

lines. See _he A@pendix for addi_iona[ i?_o_m_tzon on h

it can be shown that eqs. (6#_ and (?0) are the same as the Malnardi-

Co4azzi zelation, s in ref_ 24, and eq. (05) is eq,livalent to the Gauss charac-

teristic equation in :el. 2%

S/mplified Str_amilnes

A sln,pli_ied method o_ appzoxlma=ing the streamllne direction on the body

surface was used with rood success by DeJarnetta and Davi_ (ref_ 14) in calou-

latiz_8 laminar heatlnE rates oyez blunt-nosed cones a_ an ankle of attack, In

this method it is assumed that the direction of an invlscid surface streamline

is siren by the r_sultan_ of _he free-stream velocity vector minus its compo-

nent normal to the surface e. This assumption was moulvated by the fact that

in the Newton-Busemann theory th_ Iniulal direction of a particle enterin_ the

shock layer is in the direction of these simplified streamlines. However, the

Newton-Busemann _heory has the particles _ollowln8 sur£ace geodesics after

enterin 8 the shoc_ layer, which diff_ar from the simplified streamlines (see

ref. 7), The simplifled streamlines described _ere a_e called the _%ethod of

s_eepest descent in ref. 7 and N_w_on_,an s_reamlines in refo 9. DeJarnetta

and Tai (ref. 15) _ound tha_ the simplified str@amlines could be used _ cal-

culate reasonably accurate lamlnar h_a_in8 rates for some cases even when the

streamlines _hemselves were inaccurate. Simplified streamlines are developed

here as an a!_ernate method for calaulatlnE the inviacid suzfac_ streamlines

and correspondln E scale factor.

The magnitude of the velocity, however, is calculated from _he surface

pressure and entropy_

3O
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Define V as a unit vector in the direction of the free-stream velocity

vector, th_n the simplified method gives the direction of a streamline by the

_quation

& _ n . n n (76)

With V in the body plane of symmetry (x - y plane), it can be expressed as

(see fig. 3)

^ _ (_ ^
9 - cos _ _x sin _ r cos ¢ - e¢ sin ¢) (77)

where the term in parentheses is the unit vectc_ in the y-dlrection. Using eqs.

(32) and (77), the angle _ is given by

• - cos _ sin P + sin _ cos P cos o (78)cos _ _ "_' _n

where 0 S _ _ w. It then follows that

len x (L x en) i = IV x en] - sin (79)

and eq. (76) becomes

+ cos _
- (8o)es sin

To determine the streamline direction in terms of
^

sions for •s given by eqs. (39) and (80) to get

sin _ sin o
sin 8 =

ain

8, equate the expres.

(81)

and also

co_ 8 - cos _ - cos _ sin P . cos _ cos P - sin _ sin P cos o
cos T sin _ sin

(82)

(0 _< e <__)

These equations along with eqs. (61) and (62) are used to compute the streamline

geometry by the simplified method. In contrast to the previous section, which

calculated 8 from a differential equation involving the surface pressure

...... i'-, i" II "fl | I
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distribution, eq. (82) al!ow_ e_ to be determined at any position on the body

without integrating a differential equation from the stagnation point to the

point in question.

It remains to develop an equation for the scale factor h _orresponding

to the simplified streamlines. Recall that eq. (64) was

Dh _8 _ (64)
+ sinr

This equation can be used here to calculate h because _.he ter_ _ can be

determined as follows. Differentiate eq. (78) to obtain

- sin _ - (cos _ cos r - sin _ sin r cos o)_

- sin _ cos r sin o _-[ (83)
8_

and by using eqs. (81) and (82) this equation becomes

- cos e _r ___a
_8 = _ + cos r sin e _8

(84)

Next, differentiate eq. (82) with respect to _ and substitute eq. (84) for

_8 cos _ (sin e _p _)_-T" si--?_ _+ cos e cos r - sin r _8_-A (85)

Substitute eq. (85) into (64) to obtain

g D--_"s_n _ _ + cos B cos r g . (86)

Then using the transfo?:mation operator of eq. ($8) for ._ _-_. on _he righ_ side,

this first-order diff,arential equation can be integrated along a simplified

streamline to determine the corresponding scale factor, Note, however, that

both eqs. (81) and (86) are indeterminate at the stagna'_ion point_ and the ......

analysis in the se,-tion below must be used to supply the initial conditions for

each streamline. Although this method of computing simplified streamlines

should only be used on =he windward side of the body, it was also used on the

iQeward side in 'reference 14 with reasonably good resu!_s for the corresponding

hea_ing rates.
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Stagnation Reglon StreaMlines

The equations developed previously for the Inviscld surface streamlines

and scale factor h are singular a_ _he s_agnation point. In fact it will be

shown below that this is a nodal point. Therefore, an analytic solution will

be developed for a small region surroundlng the stagnation point. This solu-

tion will then provide initial conditions to start _he numerical iutegratlon of

the differential equations for the s_reamllne geometry and corresponding scale

factor h given in the previous two sections.

The actual location of the true stagnation point would require a numerical

solution of the invlscld flow field over these three-dimenslonal bodies at an

angle of attack, However, the true stagnation point is generally close to the

Newtonian stagnation point for blunt-nosed bodies. Therefore, to be consistent

with both the modified Newtonlan pressure distribution and the simplified

streamlines, the Newtonian s_agna_ion point will be used in the analysis here.

This point is determined by the position on the windward side of the body where

n

This condition requires that F = _ - _, and when a > 0 symmetry dictates that

= 0 and _¢ = 0 at the stagnation point.

For the region surrounding the stagnation poln_, it is adv_Atageous to use

coordinates St1 and ST which are along the body surface and in _he dlrec_ions

of ell g_d eT ' respectively. These uni_ vectors were defined by eqs. (35)

and (36), and figure 5 illus_rates these quantities.

Stagnati

Figure 5.- Stagnation region coozdinates
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The coordinate $II is along the windward streamline (in the plane of symme-

try), whereas ST is normal to Sll but on the body surface.

Consider again the position vector, _, relative to the nose of the body

(x = 0, r - 0) as used previously° Then _ can b_ considered a function of the

streamline coordinates (_,8) or the surface coordinates (SII,ST). It follows

that

aR 8_ dS11 +__dS T- ÷ dB- ? T

" hsd_ &s +hd8 e8̂ - dSll ell^ +dST ¢T^
(87)

where it should be noted that dSll and dST are not exact differentials.
^

Take the scalar product of ell with _he equation above to 8st (using

dS - hsd_)

^ ^ ^

dSll " dS &s ell + h d8 all

Recall that D-_" _ _ ; hence by using eq. (37) it follows from eg.

DSII . ^
D-_-'" as ell " cos 0

(88)

(88) that

(89)

In a similar manner it is found that

DS T ^

D--S-" &s " eT = sin 8
(90)

which when combined with the previous equation yields

DS T
--m tan 8
DSII

The Inviscld surface velocity vector can be written as

(91)

v..v $s "Vll e_.l+VT (92)

ConsiderJ_ng

(Sll " 0 and ST - 0) requires that

symmetry,

_Vll(St1, O)
-0

_S T

Vll -VII (Ell, ST) and VT - VT ($Ii' ST)' the stagnation point

V11(0, 0) - VT(0, 0) - 0, and due to

and VT (Sll, 0) - 0
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Therefore, for the region near the staEnatlon point,

vii- L_ _ sl_ and VT _ L_-_ sT8
S

and the equa=ion of a streamline In =his reBion can _e w_£ff=en as

Define B _ .........

[ _vll ]
_S11 s

_j,,,

_VT

D$ T
-- M

DSll

vT sT

to',,1"",, r'",,1 ',, (93)

as the ratio of the principal velocity gradients at the

stagnation point. Then eq. (93) becomes

DS T

DSII

which may be integrated to yield

i ST
(94)

(95)Sli " C(_) ST

where _he "constant" of lutelration C(8) is really a function of _ since

DS T
-- implies 8 is held conutant. The parameter C(8) dll-

the derlvativs D$11

tingulshes one streamline from another because 8 is constant along a s_eam-

line. For convex bodies h > O, and eq. (95) indlca_es that the stagnation

point is a nodal point. When the s_aanation reason is spherical, B - 1 and

the s=reamllnea emanate radially from the stagnation point. For B # I, the

streamlines do not emanate radially from the stasuatlon point, and the slope of

_he streamlines at the stasnatlon point is obtained from eqs. (91) and (95) as

- - alto g C(#) (96)
ten 8s lDS_i s ST_

_enca, for C(_) finite and non-zaroD _he elope of a streamline at the stab-

nation point is tan 8s - 0 for B < 1 o_ tan 8s _ - for B > II whereas
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)----'-"_"2 "q

1
_---- which gives an infinite number of values asfor B - 1 (sphere) _an Os C(8)

8 changes from one streamline to another. It will be shown later that by the

use of modified Newtonian pressures B becomes the _atlo of the two principal

radii of curvature at the stagnation point:

In order to evaluate C(8), consider the developed region around the stag-

nation point, as shown in fieure 6_

Sll

ST

f Typical S _reamline
(For B < i)

Figure 6. Stagnation region

On the circle of radius ¢, corresponding to the point where a streamline

c_osses _his circle, the angle 8 is assigned as shown in figure 6. Also,

on this circle the coordinates of the streamline are S - _ cos 8 and
II

B

ST - ¢ sin 8. Now the streamline equation $11 = C(8) ST is assumed to hold

throughou_ this circular region. Applyln 8 this equation a_ the point where

the streamline crosses the circle yields

B
¢ cos 8 " C(_)(_ sin 8)

which gives

C(8) " • cos 8 (97)

(¢ sin 8)B

Thus the parameter C(8) also depends on the value of e chosen.
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The equation fo_ the streamlines is now

P

ell cos 8 [ ST ]B
(98)

Different velues of 0 ! 8 S _ yield different streamlines.

streamline followa from eqe. (91) and (98) as

DST einB8 I-B

tan e = D$I----?= _ cos B (ST/C)

and for 8 the value of 8 on the ¢ circle, where

equation above Elves

The slope of a

(99)

ST = ¢ sin 8, the

tan e =
c B

(zoo)

Hence for B # i, 8¢ # 8; whereas for the sphere (B - i) 8¢ = 8 (radial

streamllne_). The windward streamline is 8 " 0 and the leeward is 8 " 180 °.

Next, consider the evaluation of the scale factor, h, in this region

surrounding the stasnation point. Take the scalar product of &8 with

equation (87) to 8st

dSll ^ " _8 + dST _T " _hd8 - ell 8

Considering 8 " 8(ell, ST), the previou_ equation gives

^

h _-_--= _T " e8 = cos e

Hence h = cos e (i01)

Ds T

The derivative _8_L is obtained by differentiating eq. (98), and the result is

_S T

_SL. B COS 8 sin _ (102)

_ST ST (sln2_ + B COU2_)

The term cos 8 may be obtained from equation (99) as

COS 8
B cos 8

i

1/2 (lo3)
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St_stltutlnB eqs. (102) and (103) Into eq. (i01) yields the followin 8 equation

for the scala factor

(sln28 + B ¢os28)ST
(lO4)

h - ST) 2-2B 1 i/2 sin 8[B2 c°s28 + sin2B_ {T-

on the circle of radius ¢, whore ST - ¢ sin 8, the scale factor becomes

h - (sln2_+ s =o,=_,)¢ _z0s)
¢ (sin2B + B2 oos28) 1/2

Dh] is needed, and this quantity can be determined from theFor later use, _-_ ¢

derivative of eq. (104). The result is

. (zo6)
¢ L-sln2_+ B2 cos2s

Azain, i= is wor=h no=inz =ha= for a spherical reBion B = 1 and eqe. (105) and

(106) Bive

h = ¢ and _ ¢

which to first order are coffee=.

As shown by Reshotko= ref, 25, =he ratio of velocity Bradlents,

evaluated from modified Newtonian theory as

R11

where

-[,]_a
cos P -_- s

B, may be

(lo7)

(lOS)

is the surface radlua of ourvature in the ST direction, and

1
Rz cos r T_x s

(lOW

i= the surface radius of curvature in the Sll direction, both at the stag-

nation point.
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The location of each streamline on the _ circle is determined by purely

g_ometrical considerations. Suppose the stagnation region inside the ¢

circle is represented by pert of an ellipsoid with principal radii of curve-

lure given by _ and Rll. Then for

line on the _ circle are:

= x + _[cos _ sin _ +

y; - f + ¢[=os _ cos

_/_ << 1 the coordinates of a stream-

cos _ (sln2S + B cos2_)) (110)
2

e sin c_(sln2S + B oos2_)] (111)
2

z¢ - ¢ sin _ (112)

_ = _an-1 (z/y_) (113)

Note that the form of the above equations causes no difflculty at _ - 0.

In choosing a value for _, a compromise between accuracy and computational

time must be made. The smeller the value of ¢ the more accurate eqs. (II0)

through (113) become. On the o_her hand, it was found tha_ _he step size used

to _tart the numerical integration of the streamline equations ou_slde the

circle must be less _han about ¢/i0. After testlng several values of _, a

value in the range 0.01 < ¢/RT < 0.i was found to be sufflcicntly small to

make eqs. (ii0) through (113) reasonably accurate, yet large enough to keep

the integratlon step size for the streamline equations from becomin 8 prohl-

bitively small.

Surface Pressure Distribution

As mentioned previously, the calculation of the Invlscid sub,face stream-

lines and heatin E rates are dependen_ on the surface pressure di_trlbution.

Two options are considered here for the pressure distribution, dependlng on

whether pressure data from another source is available or not. First, if

e_erimental or theoretical pressures (ratloed to stagnation p_essure) a_e

known, tabulated values around the circumference at several axial stations

are used to generate a two-dimenslc_al splits function for _he pressure ratios

and derivatives at any position on the body. This two-dlmensional _pline
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function is similar to that used to describe the body geome=ry except for the

axial variation. For blunt-nosed bodies, Bx _vc_

finite _here. Therefore, the pressure spllne function is developed to vary

with /_ in the axial direction. For a given circumferential angle _ the

derivative _ for both x - 0 and the end of _he body is determined by the

derivative f_om Lagrangian interpolation.

When surface pressures are not available from some o_her source, the

second option is to use modified Newtonian pressures, i.e.

E_. (1 - .-)p® + P_t
PS PS c°s2$ PS

(nd)

where the angle _ is given by eq. (78). Since derivatives of the pressure are

needed to calculate the streamline geometry and scale factor, modified Newtonian

pressure ratios are computed for each body coordlnate used to generate the body

geometry, and then the same pressure spilne function described above is used to

spline fit this data. In _he "shadowed" region (cos _ < 0), p - p= is used.

Gas Properties at Edge of Boundary Layer

In the calculation of heating ra_es, the local pressure (pc), density (pc) ,

enthalpy (he) , velocity (Ue) , sp_ed of sound (as) ' and coefficient of viscosity

(_e) are needed at the edge of the boundary layer. The flret-order boundary-

layer approximations allow the pressure at the edge of the boundary layer to be

the same as the corresponding surface pressure (Pc _ p) _ which was discussed

in the previous section. Also, the boundary layer is assumed to remain suf-

flciently thin so that the entropy at the edge of the boundary layer is constant

and equal to _hat value aft of a normal shock wave. This section describes how

to calculate the other flow-field properties from the pressure and stagnation

properties.

Equilibrium air properties. - Many elaborate computer programs are avail-

able for calculating equilibrium air properties. However, these more sophisti-

cated approaches require considerable computational time and storage locatlone.

In order to keep thv computations relatively simple, the correlation formulas

of Cohen (ref. 22) re used here to calculate the equilibrium air properties.
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These formulas were shown to be quite accurate in ref. 22 for pressures in the

range 10-4 atm. _.p _ lO atm_ and an enthalDy range from 128.7 BTU/lb (co=re-

sponding to a temperature of 540°F) to 16,930 BTU/I5 (corresponding to flight

at approximatel_ 29,000 ft/sec).

Ass_alng an isentropic expansion from the stagnation point_ eq. (65) in

ref. 17 8ires the enthalpy (he ) as

(
. ) 3.34_4 x l08

h _{s
hE

_he=e

•05[035}13877Ps ] Ps
_Hs/hE ).3 77

R is the stagnation euuhalpy and
s

hE = 2.119 x 108 ft2/sec 2

(115)

This approximate equation for he is more restrictive than =he limltatlons

given previously. Beckwith and Cohen (ref. 17) found that eq. (115) gave

results generally within 3 percent of highly accurate computerized properties

except when Ps _ 5 atm with H s _ 4,500 BTU/lb.

Wi=h h e given by eq. (115), the density can be computed from the equa-

tion (see ref. 22)

.965

7.344 x 10 -5 (21-_17)
(116)Pe

= he _ 6123
i - i l"

and then the coefficient of viscosity is

.992

2.0144 x l0-10 (21-_17)

Pe 1- 1.0213 1 - _

The velocity is obtained from the adiabatic energy equation as

Ue - [2(H s - he)]l/2 (118)
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Although =he local speed of sound ae is no= given in ref. 22, it can Be

readily calculated as follows. Since the entropy at =he edge of =he boundary

layer is assumed =o be cons=ant,

a = (i:")
e dp a

The inverse darlva=ive dpQ/dp can b,.ob=ained from =he deriva=ive of eq.

(i16), using the isentropic _ela=ion dh e - dp/pe. The result is

i dPe

-2"" dp •
a

e

,965
e

P

h e ] .6123(.6415) _E
(12o)

Finally, =ha Mach number follows from

U

M =-_
• a

e

(121)

Perfec_ _ass__=o_p_er=ies, - For a perfect gas with 7 = 1.4, =he usual

Isen=ropic rela=ions, as given in ref. 27, may be used to ob_aln =he following

equations:

[L ]2/7he " Hs Ps (122)

5/7

Pe Ps Ps

Ue I [2(H s _ he )]I/2 (124)

h

T = __e__ (125)
e 6006

The coafflclen= of vlscosi=y is computed from Su=herland's law, which gives

2.27 x 10 -8 T 312
e

_a = T • 198.6
e

(126)
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and the speed of sound is simply

2 (z.4)p/pe (127)ae m

S=agna=ion__o_e:_.'_i_s__, - In the analysis here =he stagnatlon s=reamllne

is assumed to pass th=ough =hQ no.nnal par= of the bow shock wave. It is then

ne¢_Bsary _o calculate both equillhrium air and perfect gas s_agnatlon-proper-

ties from known values of P_, 0_, T , and V .

First, consider equilibrium a£r. The conservation equations for mass,

momentum| and energy across a normal shock wave are:

_. V = P2 v2 (128)

V 2
P_ + _m ® = P2 + pm V v 2 (129)

v2
" (130)

HS " h_ ÷ -2 = h2 +--2

These equations must be solved itera_Ively for equilibrium air, and =he pro-

cedure used here is as follows:

i. Assume v 2 - 0.

2. Calcula=e P2 from eq_ (129).

3. Cal_ula=e h 2 from eq. (130) o

4. Calculate P2 from eq. (116).

5. Compu=e a new value of v2 from eq. (128); then 80 back to s=ep 2

and s=art =he process aBain.

6. Repeat s=eps 2 through 5 until _he new value of v 2 is suffi¢len=ly

close _o i=s previous value =o give monvergenae. For an accuracy of

10 -5 , six i=eratlons will generally suffice.

Using P2' h2' and H , eqo (115) can be rearranged =o give
s 1

hE [2117 .035 h2 .3877 l.is .3877 _. 0353. 345 108

then eq. (116) _an be used to calculate 0s.

(131)

ml ,
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For a perfect gas with V m 1.4, refo 27 gives the stagnation pressure

density as

Ps " 0_" 2 +5,, 7Ma- 

(132)

<133)

Stagnation- Point Hea_-Transfer Rate

For general three-dimensional stagnation poin=s, the correct limiting form

of the stagnatlon-point heat-transfer raue through the use of the axlsymmetric

analogue was no= possible in analyses such as references 5, Ii, and 26 because

an accurate evaluation of the scale factor h could not be obtained in the

stagnaulon region. The correct limiting form of the stagnation-polnt heat-

transfer rate can be obtained in the present analysis since eq. (104) gives an

accurate expression for scale factor h in the stagnation region. To prove

this assertion, it will be sho_n that when the axisymmet_ic analogue is applied

to Lees' method (ref. 16) for computing qW' the limiting form at the stagna-

tion point is the same as the general three-dlmeDsional stagnatlon-poln= heat-

transfer rate obtained by Reshotko (ref. 25) for a cold wall .

In the application of the axlsymmetrlc analogue, =he heating rate alonB an

inviscld surface streamline is obtained from the e_pression for the heating

rate on an equivalent body of revolution at zero angle-of-arrack when the body

radius is replaced by the scale factor h and the distance along the surface

of the body of revolution is replaced by th_ distance along the Invlscld sur-

face streamline. With these replacements, Lees' equation for a cold _all (ref.

16) becomes U

67 v ;--"hO.5 P=
- v'_e s Ps V.

qw," -_ (134)

P--- h 2 DS

Ps V_
o

TW--_-e-axisymmetric analogue, or small cross flow assumption, was not used in

Reshotko' s analysis,



where the factor 778 has been added Co make qw have the dimensions of

BTU/ft2-sec. This equatlon can be applied independently to any Invlscld

surface streamline. However, in becomes Indeuermlnate at the stasnatlon

point since both Ue and h go to zero there. This Indetermancy can be re-

solved by the usa of the results obtained In the secclon on Stagnation Reglon

Streamlines.

From eq. (104), the scale factor h in the stagnation region is

(sln2_ + B cos2_) ST

h - G sin 8 (135)

G _ [B2 cos28 + sln2B8 (ST/C) 2-2B] 1/2 (136)

Replacing V by the velocity at the edge of the boundary layer Ue, eqs. (91)

and (93) may be combined to give

and also

DS T G DS T
DS ---= (138)

sin 8 sinB8 (ST/¢)I-B

The?, equations are accurate to the first order in the stagnation resion , and

to be consistent the pressure ratio to first order of accuracy is

Eqs. (135) through (159) can now be used to evaluate the integral Ineq. (iJ4)

i u ._ F_VT] (sln2B+ B cos28)2 2-2B ST2+2Bp._ • h 2 1 ¢

_sv-_ _s v. L_T_s sin2+2B_(2+ 2B>
o

(14o)

which can be used to evaluate the indeterminate part of eq. (134) as follows:



I

L

U

lira Ps V , 1 2(1 * B)

Using this result, the limiting form of eq. (134) becomes

0.5 pr-.67 s_ / [aVT ]

(141)

(142)

Consistent with Lees' approximations for a cold wall, H _ H - h ,
S S W

(_e _e)s _ (Pw _w)s ' and thus eq, (142) is essentially the same as Reshotko's

equation (ref. 25).

For the present analysis eq. (142) is modified so that it will reduce to

two-dlmenslonal and axisymmetrlcs_agna_ion-poin_ heat-transfer rases that are

compatible with experimental results. In ref. 17 the following equations were

found to compare reasonably well with experimental data:

0..,.,,7o .,.,,,<o,.,.,>.oo.qro,.,,1,..,..," -- (_s-hw) (143)(qw,s)2-D 778 Pr-" (Pe _e)s s ' - D-S-" s

(qw,s)axlsym. "-
0.768 6 ) ,4
778 Pr-' (Pete s • (Hs-hw) (144)(_w_w)s D--f- s

Consistent with the analysis of ref. 26, the factors 0.577 and 0.768 in eqs.

(143) and (144), respectively, are replaced by

i

0.768 ,-_- --

_wC_s - .5)

(14S)

for the general three-dimensional stagnation point. Using the axisymmetric

analosue, the pressure-gradient parameter [ for a relatively cool and

isothermal wall is determined from eq. (33) in ref. 17 as
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s U
2 [ P-- __e h2 DS

_" t J Ps V®
e o

Ill

o[o.]Ds p. K h

(146)

where te - he/H s, For a sphere [e = 0o5, whQreas _s " i

Using eqe_ (146) and (135) through (139), it is found that

three-dimensional stagnation point is

for a cylinder.

is for a general

for B > 1

and _'s B i (147)" _ for 0 <_B <_I

However, Beckwith (ref. 5) found =hat _ 1 - _ foe .5 <_B <_l, which gives

the corzect limiting values for a sphere (B = l, is = l) and a cylinder (B - 0,

is" i)butdisagreeswi=heq.(147)above.Eq.(147)gives8-," ½ fora

sphere (B - I), but for the cylinder (B - 0) it gives 8--s = 0. This reaul= is

not surprising for the axlsymmetric analogue because the streamlines are ass_uned

to originate from a single stagnation point, and therefore all ".he streamlines

on =he cylinder are forced to emanate from this stagnation polu= rather than

from the stagnation line along a generator of the cylinder. As will be shown

below, the pressure-gradien= parameter is has only a small influence _n the

magnitude of the 'Corm given by eq. (145).

From eqs. (52) and (59) in ref. 26, the following equation is obtained

[ 1_w(gs) i ÷ o527 8 "686

, " 1.033 s_ .686 (148)
_w([s = .S) 1.116 + .411 8s

Using this result in eq. (145), =he modified form of eq. (142) consistent with

eqso (143) and (144) is
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x (Pw Pw) as (_ _e) b8 (Hs - hw) (149)

The exponents a and b arm assumed to vary llnaarily with

values for a sphere and a ¢yllnd_r in eqs, (143) and (144).

a - o.l - (o08)([8 - .5)

_s between the

Hencel

(15o)

b - 0.5 - a (1.51)

The effect of 8e on qw,s is small sincm it enters eq. (149) primarily

_hrough the factor given by eq, (145), and this factor is only weakly dependent

- B Bon 8s, varying from _9256 for - 0 to 1.033 for = i, The factor

[_VT] in eq. (i49) is ob_alned from the modlfi.d Newtonian prassur, distri-

bunion as

(152)

Laminar Hea_-Transfar Ra=ea

Applica:ion of =he aalaymmetric analogue to solutions of the locally

similar boundary-layer equations in ref, 26 gives the laminar hea=ing-rate as

(1S3)
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For a relatively cool wall the equation of state gives

- -£-- (1s4)
Pw _ T

W

Then for an isothermal wall and _w " _w(Tw )' it follows =hat

(155)

By substituting eq. (141) into (146), the following equation results.

The factor

I- ]
8 te

! I

L" L_'_] (_+l)

-1

%w/_w,s in eq. (103) is obtained from eq. (61) in ref. 26 as

(is6)

_w 1.116 + .411 _s '686 i + .527 [.686

--,--- (l.l-..1625t+ .0625t)

(.85 + .15t e - _w )

x (l - _w,s ) (157)

As suggested by Cohen (page 33 of ref. 26) j the first factor on the right side

of eq. (157) was used to replace the factor 1.033 j in eq. (61) of refo 26.

Since the wall is assumed =o be relatively cool an_ iso_hermal_

h
W

_w " _w,s " _- (158)
S

The final form of the laminar heatlng-ra_e ratio is obtained by substitut-

ing eqs. (146), (155), and (156) into eq. (153), which gives
_P

m

---. --- , ......... , | , ,
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!

U _w

2--_h --
q___E_w= Ps _ _,_s (159)

! I

where the factor _wl_w,s[ _s obtained from eq. (157), B is determined from8V T ]

eqs. (107) t-_ (i09), and L _ / may be obtained from the modified Newtonlan_T J s

value given by eq^ (152).

Laminar heating rates are obtained by appiy_ng eq. (159) along an inviscid

surface streamline from the stagnation region to the end of the body or the

beginning of the transition region, whichever comes firSt e Heating rates along

each streamline are computed independently of the other streamlines. The

integral in the denominator of eq. (159) can be evaluated by quadrature for

each integration step along a streamline°

A,'

Transition Region Heating Rates

The location of the transition region on a body is a subject open to much

speculation and debate. It is not proposed that the present method will predict

the location of the transition region. Instead, the beginning and end of the

transition region may be specified by one of the three options listed below. _......

i. Geometric location, or

2. A specified value of the integrated unit Reynolds number along a

s
PeUe

surface inviscid streamline, i.e. Rn I = J -- DSb or
_e

• o

3. A specified value of the momentum thickness Reynolds number,

Pe Ue _m
Rn - , along the inviscid surface streamline.

m _e

Once the beginning and end of transition is determined by one of the three

methods above, the heating rate in the transition region is calculated as a

weighted average of the local laminar and turbulent heating rates. Thus the

heating rate is written as
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qw + wf (qw )" qwlam =urb - qwiam
(160)

where wf is she "weighting" function with wf _ 0 at the beginning of
%

transition and wf i at the end of transition, A metho_ for calculating

the turbulent heating rates is given zn the next sec=ion_

The "weighting" functlon wf

of Dhawan and Na_as£mha (ref, Lg).

for wf, given by

where

Ls determined by .gme_hod similar _o tha_

This method uses a Gausslan dls_ributlon

,

wf - i - exp(-,4t2 _tr) (161)

S - e
"tri

(ZS2)

$ is distance along =ha inviscid surface streamline, Stri is =he distance

alor_g the s_reamtine where tcansition begins, and Sire is th _.dis_ance where

transition ends

For a finite _ransltlon region, the pars_ne_er k in eq. (162) would have

to be zero if wf were exactly one a_ the end of translcion. Here, l will

be chosen such that w£ - i - 10-4 a_ the end of the transition region, which

was _he value used by Harris in ref_ 2 The expression for

this condition is

St:e - Strl
k¢

4.74

which satisfies

(t63)

Then eq_ (161) gives the "weighting" functlon as

wf i - exp -,412 .........
" (S_r e - S_r i)

(164)

The equation above can be easily applied for _hose cases where the begin_

nlng and end of the transitloa _egion is specified by geometric location on the

body, If the coordznates of several poln_s on the boundary o_ the transition

region are known, a one-dimensional cubic splice can be fit to this da_a to

de,ermine _he axial location of the beginning and end of transition for any

circumferential position.
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However, when transitlon is specified by the integrated unin Reynolds

number or momentum thickenss Reynolds number, the cor_espondlng geometric

position along a streamline for the end of transition may lie off the body sur-

face. In this situ_tion the value of $ canno_ b_ determined. To clrcum-
ire

vent this situation, the "weighting" function for these two options wl]l be

based on the va].ue of _he integrated unit Reynolds number (Rn I) or momentum

_hickness Reynolds number (Rnm), Therefo:e eq, (164) becomes

4_74 (Rnl - Rnl,t_.)

wf = 1 - exp -.412 _ Knl_tri)..... (165)

when =ransitlon is based on _he Integrated unit Reynolds number, or

4, 74 (Rnm - Rnm,=ri)

w f i- exp - 412 (166)
= , (Rnm, =r_ '

for transition based momentum thickness Reynolds number, where _he subscript

"tri" refers to the beginning of transition and "_re" refers =o the end of

transition_

Turbuien_ Heat-Transfer Rates

Cooke and Hall (refo 6) have shown that the axlsymmetric analogue is

applicable to turbulent as well as laminar boundary layers. There are many

me=hods that could be used to calculate turbulent heating rates on axisymmetrlc

bodies. The approach used here is to apply the axisymmetrlc analogue _o a

modified form of the integral me_hod of Reshotko and Tucker (ref_ 20) _o obtain

the turbulsn_ momentum thickness. Then =he momentum _hickness is used _o cal-

culate the local skin £_Ic_ion coefficlen_ from the correlation formula of

Spalding and Chl (ref. 19), and finally _he Karman form of Reynolds Analogy

(see ref, 21) is used to calculate _he turbulent heating rate corresponding to

_he skin friction coefficient.

Momentum _hickness. - Resho_ko and Tucker (ref. 20) developed an integral

method to calculate the momentum thiukness from _he numerical solution of two

first-order differential equatlons for em and H i along a s_reamline for a

perfec_ gas_ Thzs me_hod is modified here to apply _o a perfec_ gas or

52



equilibrium air, and _he skid friction coefficient used in _he method is if%at

value computed simultaneously from the Spalding-Chl approach described helow.

The basic method used by ref_ 20 can be applied to both perfac= and equi-

llbrlum gases if the ra=io as/as, s is replaced by _e/Hs. For the perfect

gas =hess two expressions are one and the sam,_; however, =hey are different for
DM

1 •

an equillblrum gas. As a result, the quantity M DS mus= be replaced by

Hs_ DU e e

h---U DS " Then the integral form of the momen=um equation becomes
ea

Dgm em DUe em Dh Cf
D-Y- + (2 + H - M2e) U DS + E-D-S = 2- (167)

e

where Cf

compressible form factor Is given by

* H U 2

H_ 6 s +_
T" " h- Htr 2h

m • •

where

is the local skin frlc_Ion coefficient° Following ref. 20, _he

h

Htr ,. Hi + (_- 1)(1.3)
s

Hi is calculated from the equation

2 (Ri + 1) (H - i) + (_- i)

Th_ inccmpressible form factor

DH i H DU
,, s @

DS h U DS
• e

(.I.68)

(169)

.15 2]] Cf[2.6 (Ri- l) -%-_ (Hi+ l) - o0aHi (Hi- l) 2 e
m

(zTo)

where due account has been made for a perfect gas or equilibrium air.

Eqso (167) and (170) are integrated numerically alon 8 an invlscid surface

streamline, starting at _he beginning of the transi=ion region. The initial

values of 8m and H are the laminar values given by ref. 17, and Cf is

supplied by the Spalding-Chl approach described below.

Skin friction coefficient. - The turbulent skln-friction cocfficient is

determined by =ha correlation formula of Spalding and Chi (ref. 19) based on

momentum thickness Reynolds number but modified to account for perfec= or

equilibrium gases. Eq. (52) of ref. 19 is modified to read
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wher_

and the fac_Qr 0_89

FR6 - (hw/he) -_702 (haw/hw)'772

h u 2
e

e e

is the turbulen_ recovery factgr.

(171)

(172)

With the definitions

_e U O
• m (173)

R_ " _e

+ 1/2
uc = (2/cf F) (174)

the compressible form of eq. (28) in ref. 19 becomes

FR_ R6 _ + (KE)-I [1-

1 (KUG)2 1 (KUG)3÷ (2/KU_) , i - K " if

- 4-_(KU) - 18--5(KU (175)

where K = 0.4 and E _ 12. In the application of eq. (175), FE6 and R_ are

computed from eqs, (171) and (173), respectively, wi_h em obtalned from the
+

Reshotko-Tucker method described above. The UG is calculated from eq. (175)

by an Iterative scheme such as the Newton--Rhapson me_hod Using +• UG, eq, (174)

gives the incompressible skin fric_ign coefficient sin_e

Cf, i _ F¢ Cf (176)

Finally,

In ref_ 19:

Cf follows from eq. (1'76) once Fc

Fc is defined by

i

c o Pe

has been evaluated.

(177)
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where

layer. The boundary layer approximations give

the equation of s_ate yields

T h
A_._%. e

Pe T hbl

is the enthalpy inside the boundary layer, which is assumed to

p and U are the density and velocity across the turbulent boundary

P = Pe' and for the perfec_ gas

where hbl

follow Crocco's relation

(178)

._hbl hw-- h -h _ [ h __U2
_--. _--+ aw w aw

h + 1 - _ U2 (179)e e e • e
e

Upon substituting eqs. (178) and (179) into (177), the resulting expression can

be integrated for _he perfect gas to yield

-i
uan

m

[h w] rhhillL
h e

-i
tan

haw - hw ]
h e

2

(18o)

F m

C

_or equilibrium air e_. (180) is no_ valid because eq. (178) is based on

a parfao_ gas, The density-en_halpy relation for equilibrium air is obtained

from eqo (116) as

! - 1.0477 [1 -. (he/hE)'6123]
L.

Pe 1- 1.0477 [i- (he/hE)'6123 (hbl/he) "6123] (181)

Then using eq, (179) in (181), the inregr_l in eq. (177) is evaluated n,m_eri-

cally to obtain Fc for equilibrium a_r,

Turbulent HeatinE-Rate Expresslon, - The Karman form of the Reynolds

analogy fac_or is given by ref, 21 as
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cf, i 6 (182)

where Pr = 0.725 was used. As in rsf. 21, it is assumed _ha_ the compressible

R_ynolds analogy factor is the same as the incompresaible factor, i.e.

(iB3)

Then, since

qw(778)

NST = Pe Us(haw " hw)
(184)

the turbulent heauing rate follows from eqs. (182)-(184) as

qWturb i + 5 Pr - i + in (5Pr+_____l)

(iBs)

Both Cf and Cf, i are obtained from the $palding-Chl approach described abo_e.

COM2UTATIONAL METHOD

The method developed herein was programmed on the IBM 360/75 digital

computer at the North Carolina Sta_e University° This program is also com-

patible with _he CDC 6600 computer at _he Langley Research Center, NASA. A

detailed descrip_io_ Qf the computer program appears in Part II of this _eport

(NASA CR-II1922),

To run a typical case, the following da_a are needed as inpu_ parameters:

i. p®, T=, V , a, _w"

2. specify a perfect gas (y = 1.4) or equilibrium air.

3. body g_ometry da_a as Car_eslan coordinates of points around the

circumference a_ several axial s_a_ions.

4_ specify surface pressure distribution by one of the following three

methods:

56



a) P/Ps from some other source for points around the circumference

at several axial stations along the body, or

b) modified Newtonian pressu3:e distribution, or

c) modified Newtonlan pressure dis_rlbutlon, but s=reamlines

computed by the simplified method of ref. 14.

5. specify the beginning and end of the transition region by one of the

following three methods:

a) Eeometrlc locaKion, which is s_eclfled by the Cartesian coordi-

nates of points around the circumference of the body for both

the beginning and end of transition, or

I_) values of Rn at _he beginnlng and and of transition, or
m

c) values of Rn I at the beginning and end of transition.

If transitional and turbulent hea_ing rates are not required, lami-

nar heating rates alone may be calculated.

6. The value of _ for each inviscid surface streamline to be computed,

where 0 _ 8 s 180 °, 8 = 0 is the streamline in the windward plane

and _ = 180 ° is the streamline in the leeward plane.

All _he input data used to calculate the results in this part of the

report are given in Part II. The computer program calculates heating rates and

other pertient data along each inviscld surface streamline independently of the

other streamlines°

RESULTS

To illustrate the present method, results are presented for blunted cones

at angles of attack, a blunted 70 Q slab delta wing, and the HL-10 liftln8 body.

Blunted Cones

Blunted 9° half-an$1e cone. - Figure 7 shows three inviscld surface

streamlines (8 = 5°, 20 °, and 90 °) calculated for a 51unted 9Q half-angle cone

at _ - I0" and M = 18 using a perfect gas (7 " 1.4). Each of the three

streamlines was calculated by three different methods: (i) method of charac-

teristics (ref. 28), (2) present method using modified Newtonian pressures,
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and (3) slmplifled streamllnes by the method of reference 14. Al_hough the

geometry of this body could be represented by simple analytical expressions,

the coordinates of 19 points around the circumference of the half body at 20

axial stations were used co generate =he brJy geometry by the doubly cubic

spline function_ Figure 2 shows that t_.e _ m 5 _ and 20 ° streamlines calculated

by the present method using modified Newtonian pressures are in good agreemen_

with the "exact" streamlines calculated by the method of characterlscics. The

8 - 90 o streamline ce!aula=ed by the present method does not agree well with

the "exact" reculc, but this is to be expected since this streamline goes into

the "shadowed" region (@ _ 154 _) on _he conical afterbody where the pressure

is _e_ equal to free-stream static pressure. The simplified streamlines are

significantly lower than those calculated by the ocher two methods.

Blunted 15_ half-a_Kle cone. - In reference 29 Cleary gives tabulated

experimental laminar hea_ing.-rates on a spherically blunted 15° half-anE.<e cope

at M - I0¢60 In order co compare results from the present method with some of

ti:is data, s_reamlines and laminar heacln s rat_s were calculated on this con-

- 0.375", p_ - 2 6614 lb/f_ 2, T _ 89.971QR, andfiguration for _ - 20 °, R° .

V - 4928¢I f_/sec, (M - i0_6) o Although a perfect gas with y - i_4 was used

in the calculations, gas imperfections in the wind tunnel stagnation properties

- - 2000_R were taken into account to determineof Ps 1_73 x 105 Ib/ft 2 an_ T s

the free-stream condltions_ In addition, i= was deCermlned that a value of

_w _ hw/Hs " 0.251 corresponds co Tw/T s - 0.270_

The body geometry was specified by the coordinates of 20 points around

_he circumference of the half body at 19 axial sca_ions_ Streamline patterns,

calculated by the present method using modified Newtcnian pressures and by the

simplified method of ref. 14, are shown in figure 8 for 8 = i°, 10 ° , 15 ° and

45 °, This figure shows that the streamlines move from the windward plane and

rapidly approach the leeward plane, and the s_reamllnes calculated by modified

Newtonian pressures wrap around %he surface ac a steeper rate than the simpli-

fied st=eamlines. The "equivalent radius" or scale factor increases along a

st_eamllne on the windward side, where the streamlines are diverging| but

decreases along the leeward side due co converging streamlines. As mentioned

previously, the streamlines are continued into the "shadowed" region of the

body (9 z 137.4°), although the pressure is assumed to be free-stream static

i_, -_ :
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pressure in that region. It is possible that she flow separates from the sur.-

face somewhere in th_s resion, and therefore the calculated streamlines and

hea_ing rates are questionable there°

Laminar heating-rate ratios (qw/qw,s), calculated by t:he present method

using both she streamlines computed from modified Newtonian pressures and the

simplified s_reamlines, are compared wi_h Cleary's experimental data* in fig-

ures 9, i0, and iI. Figure 9 shows the haatlng-rate ra_io along the windward

plane, whereas figures I0 and ii show _he circumferential distribution of

heatlng-rate ratios a_ axial stations of x - 3_56" and 9.36", respectively

(corresponding _o xs/L - 0:202 and 0_466 in ref. 29). Very i_ood agreement

wi_h the experimental data is obtained for the heatlng-rate _:atiQs using

modified Newtonian pressures and reasonably good agreemen_ u_ing simplified

s_remnlines for this case, For this relaulvely simple body _hape, _he heating-

ra_e ratios calculated using the simplified streamlines are close to those

using modified Newtonian pressures although _he streamlln_s themselve_ differ

by a large amount (see fig. 8). It is significant to note _hat the ratio of

the angle-of-a_ack to the cone half-angle is 1,33 for _hls case_ and thus the

present method is no_ limited to small angles of attack°

Blunted 70 ° Slab Delta Wing

This configuration is a 70 _ swept delta wing with a cylindrical leading

edge which is tangent _o a flat slab on the upper and lower surfaces° The

51un_ nose is a spherical cap, and the radlus of both the spherical cap and

cylindrlcal leadlng edge is one foot° Although _his configuration could also

be specified analytically, coordinates of 13 points around _he seml-pa_iph_ry

at 19 axial stations (0 = x & 1.95 ft) were esed to generate _he body shape.

Figure 12 illustrates the streamline patterns calculated by the present

method (using modified Newtonlan pressures and a perfect gas) on _his delta

win8 at _ = i0° and M = 8 (p® = 103 ib/f= 2, T® = 416°R, V® = 8000 ft/sec, and

_w " 0o4)_ It can be seen =hat _he 8 - i0" streamline is converging towards

the center line on the flat slab which causes the scale factor to start

The experimental heating rates in ref. 29 are ratloed to the calculated

- 35°94 BTU/ft2-sec in this
qw,e report.
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decreasing, On the other hand, =he _ _ 60 _ s=reamllne runs nearly pa=allel to

the leading edge beyond the nose, and at x - 2 ft the scale factor is still in-

creasing which £ndicaues the s_reamlines in this region are diverging° The

streamline patterns in flgu_e 12 are qualitatlvely similar to the experimental

oil-flow pa_terns in reference 30 for this angle of attack,

Laminar, tz'ans±=ional, and_turbulent heating-rate ratios along =he wlnd-

ward streamline (_ ,, 0) are _hown in figure 13. Transition was arbitrarily

chosen to begin at an - i03 and end a_ Rn - 2 x i03_ These values were used
m m

to illus_rate the capabiliuy of the present method _o calculaue transi_lonal

and _urbulen= hea_ing rares, and _hey should not be construed to represent-the

actual transition region on this body_ As shown in figure 13, the transition

region corresponding to these v_lues of Rn lies in _he narrow band
m

0,268 ft & x _ 0.318 ft, This figure also shows that the heating-rate ra_io

increases sharply in _he transltlon region, and then decreases in the fully

turbulent region. For x i [ f_ _he wlndward streaxnllne is on the fiat slab

where the heatlng-rate ratio decreases very slowly°

HL-IO L1f=_ng Body

The geometry of the HL-10 llf=ing body without fins is illustrated by plan

and side views in figure 14 and cross sections in figure 15. This body is an

example of a shape whose geometry is diff_cul_ to describe analytically_ In _he

present method _he body geometry was generated from the coordinates of 20 poln_s

around the semi-periphery a_ 20 _xial stations.

Figure 16 depicts laminar, transitlonal, and turbulent heating-rate rat%os

calculated along th_ center line of the lower surface for _ - 20 _, M - 10,

p_ - 103 lb/f_ 2, T - 416_R, V - 105 ft/gec, and _w " 0ol, Equilibrium air

and simplified streamlines wec_ used in these calculations, and _ransi_ion was

arbitrarily _hosen to begin a_ x = 33,07" and end a_ x - 54,24"_ Again, _he

heating-rate ratio increases sharply in the transition region, and then begins

to decrease near the end of that region.

Difficulties were encountered for this _ase when modified New_onian pres-

sures were used to dalculate the invlscid surface streamlines° Along _he wind-

ward s_reamllne the scale factor went to zero, w_ich indlcate_ merging or

crossing of atreamlinee and invallda_es _he hea_zng-rate calculations° This
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difficulty can be traced =o the fact. =hat away from the nose the lower surface

of the HL--10 body is flat An the z-dl_ectl_n; and modlfied New_onlan pressures

are cons=ant a_uss a flat surface° As shown in the Appendlx_ =hls feature of

modified Newtonian pressures generally p=oduce_ questionable resul=s_

DISCUSSION

In the calculatlon of inv_sc_d surface _ream[ines and scale factors,

flrs_ and second d_rivatlves of both the body geome_r_ and pressure are needed.

The doubly cublc spline function was found to rep_esen_ _he geometry of the

bodies considered herein |latlsfac_o:11y. However, its accurac_ is affected by

the number and &ocation of body posltlons used, and th_ spllne function does

not smooth ou_ data points (although At does smDo_h derlva_ives)_ When pressure

data from some o_her source a_e used in _he presenu method, _hey sbould be

smoothed before using them so that the pressure spllne function will be

accurate_

Inv%scid surface streamlines calculated from modified New_onlan pressures

compared well wi_h those from _he me_hod o_ characterlstlcs for a 9_ half-angle

cone at s - l0 ° and Mw - 18, excep_ for the "shadowed" reglon. In the

"shadowed" region on the leeward side) the pressure ks assumed to be constant

at p_, and thus _he streamlines calculated in this region are inaccurate and

follow geodesics of the surface (see refo 2). In addition, the flow may sepa-

rate from the surface somewhere in _he "shadowed" region, which makes the

resul_ from the present method questzonable there_

_he present me=hod was found to predict laminar hearing races very well on

a blunued 15_ half-angle cone at s _ 20 _ and Mw - 10.6 using modifxed New=onlan

pressures° Additional comparisons of the present theory with experimen=ai data

on ocher body shapes and for =ransltional and turbulent heating should be made

to assess the accurac> of the theory more _horoughly_

Bodies with fla_ segments, like the blunted ?0= slab delta wing and the

HL-IO lifting Body, presen_ difficulties when inviscid surface streamlines are

calculated uslng modified Newtonian pressures or simpllZied streamllnes_ On a

flat se_men_, Bo_h the modified New_onian pressure and the angle _ are constant,

and consequently eq_ (48) shows _hat =he s_reamlines are straight (e - constant),
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and the direction of each streamline is determined by its direction upon enter-

ing that flat _egment, Since ea_:h streamline may have a different direction at

the beginning of the flat segment, it is possible for the streamlines calculated

from modified Newtonian pressures to cross over one another*. In addition, eq.

(75) shows that D2h/DS 2 - 0 along these calculated streamlines which means that

the scale factor h is linear'Lly increasing o_ decreasing along the streamline,

dependlng on the value of Dh/_,S at the beginning of the flat segment. In par-

tlculaz, if Dh/DS _ 0 it is easy to see how h calculated by this approximate

method may go to zero (as encountered on the HL-10 body) and even become nega-

tive. The scale factor along the windward streamline is discussed more thor-

oughly in the App_ndlx, On a flat segment the simplified streamlines are all

parallel and _he scale factor h along each streamline is constant and equal

to the value the streamline had upon entering the flat segment. The difflcul-

ties encountered on flat sesments with t_ese two approximate methods for calcu-

latlng Inviscid surface streamlines can be circumvented by calculating the

streamlines from an accurate pressure distribution.

In the preset= method the boundary layer is assumed to be sufficiently thin

that the flow may be considered to be isentroplc at the edge of the boundary

layer. This assumption may be invalid away from the stagnation point on some

body shapes due to the boundary layer "swallowing" the entropy layer. When

this occurs, the entropy at the edge of the 5oundary layer could be signifi-

cantly less than the entropy af_ of a normal shock wave,

The computational time required to compute the examples given herein is

hishly dependent on _he number of streamlines specified in the Inpu_ data.

Typical cases with slx streamlines calculated from modified Newtonlan pressures

required less than 4 minutes on the IBM 360/75 computer for a perfect 8as_ When

simplified streamllnes were used, the computational _ime was reduced about 50%.

On the other hand, th_ computational time was increased about 10% when equillb-

rium air was used in place of a perfect 8as.

Of course, it Is physically impossible for one surface s_reamllne to cross

another.
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CONCLUDING REMARKS

A method Zs developed for _ab=ula=zng Znvzscid surface s=reamiznes and

laminar, transitlona[, and turbulent hearing rates on general blunt-nosed these-

dimensional bodies a= angles of a_ack in hypersonic flo_s. Relatively 6imple

techniques are employed _o keep the compu=atAonal storage and run _me down to

small values (less _han 4 mznutes for a typical case on the iBM 360/25 computer)°

S_zeamllne8 ca!cu[ated f_om _he mod&_led New_onian pressure dist_ibutlon

we:e found _o compared _avorably wlth _hose £rom the method o_ uhar_c_erls_Ics

on the windward slde of a 51unced 9a half-angle ,zone a_ e - 10_ and M - 18,

Laminar heating ra_es calculated on a blunted 15 Q half-angle _ons a= _- 20 °

and M - I0_6 compared very Well wl_h experimental data:_

Streamlines and .laminar, transitional, and _urbulent heatlng :ares wer_

calculated on a blunted 70_ slab del_a wing at _ - i0 _ and M_ = 8, and on _he

HL-IO lifting body at _ _ 20 = and M= - lO These bodles have some flat seg_

men=s, and since the modelled New=onlan pressure is cons=an= over a flat sur-

face, s_reamline pa==erns and corresponding hearing rates calculated _rom

modified New=onian pressures are questionable, This difflcul=y can be circum-

vented by using an accurate surface pressure distribution in lleu of modified

New_onlan pressures_

The relatively small amount of numerical computations required coupled

wi_h reasonably good accuracy, makes _he presen_ me_hod attractive for engi-

neering applications. Additional comparsions wi_h experimental da_a on o_her

body shapes and for _ransi_ional and turbulen_ heating are needed to assess

the accuracy of this me_hod more _horoughly.

Mechanical and Aerospa-ce Eng_neerln_ Department,

North Carolina State Unlversiry,

Raleigh, North Carolina, Augus_ 25,_1971 .....
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APPENDIX

Scale Factor Along Windward Streamline

Along the windward streamline ¢ - 0, 8 - 0, and symmetry requirements
I_ I@

dictate that % - 0, 6_ - 0, _V/_¢ - 0, and _ _-_ - _ _-_'. Therefore, for this

streamline

and

where

and

¢-0 _-0 ¢-0

sin F aoi . 1 Df i (A2)

sin _ = DSl
_-0 ¢-0

(A3)

-1

(A4)

is the body radius of curvature in a cross-sectional plane (x - constant) at

¢ - 0. When eqs_ (AI) and (A2) are substituted into eq_ (64), there results

1Dh I . [i @ 1 Df] (AS)
h Psi _-o v-__-_(vsine)+ _$D-_"_-o

This equation can be integrated to glve the scale factor along the windward

streamline only when the veloclty-gradient term on =he right side is known.

For an axieymmetric body (o _ _), R_ - £ and eqo (AS) reduces to eq. (B-f1)

in reference ii.

When only the surface pressure distribution is known, eq. (75) must be

used in lieu of eq_ (AS) _o calculate h, and along =he windward streamline

i_ reduces to
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VI .0 ÷-0v

(A6)

where

Rz . ._ Jl _r is the body radius of curvature in _he _ - 0

cos r _-_

plane. _f _he lower surface of a _h_oe-dlmensloual body is flat in the

z-dlrectlon, then R_ _ - and du_ to _ymme=_y (_p/_);_ but _enerally

(_2p/_2)_. 0 _ 0, al_hough the modified New_onlan pressure distribution gives

(_2p/0$2)_. 0 - 0, _hen a segmen_ of the lower surface i_ flat i_ two direc-

tions. _hen R_ * _ and Rx* - and aq. (A6) reduces _0

v2 h Ds_s f2_21_.0

This equation will yield the correct scale factor along _he windward streamline

on a flat se_men_ only if _he corrac_ p_essu_e distribution is used. When

_he modified New_onlan p_essu_e dis_zibution in used, eq. (AT) reduces _o

(D2h/D$2)_.0 - O, which generally gives inco_ac_ re_ul_s on a flat segment,
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Figure 14. - Plan view and side vlew of RL-IO fir=ins body.
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